Spatiotemporal constraints on the force-dependent growth of focal adhesions.

نویسندگان

  • Jonathan Stricker
  • Yvonne Aratyn-Schaus
  • Patrick W Oakes
  • Margaret L Gardel
چکیده

Focal adhesions (FAs) are the predominant mechanism by which cells mechanically couple to and exert traction forces on their extracellular matrix (ECM). It is widely presumed that FA size is modulated by force to mediate changes in adhesion strength at different levels of cellular tension. However, previous studies seeking correlations between force and FA morphology have yielded variable and often conflicting results. Here we show that a strong correlation between adhesion size and traction force exists only during the initial stages of myosin-mediated adhesion maturation and growth. For mature adhesions, no correlation between traction stress and size is observed. Rather, the tension that is sustained at mature adhesions is more strongly influenced by proximity to the cell edge, with peripheral adhesions transmitting higher tension than adhesions near the cell center. Finally, we show that mature adhesions can withstand sixfold increases in tension without changes in size. Thus, although a strong correlation between adhesion size and mechanical tension is observed during the initial stages of myosin-mediated adhesion maturation, no correlation is observed in mature, elongated adhesions. This work places spatiotemporal constraints on the force-dependent growth of adhesions and provides insight into the mechanical regulation of cell-ECM adhesion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transient Frictional Slip between Integrin and the ECM in Focal Adhesions under Myosin II Tension

BACKGROUND The spatiotemporal regulation of adhesion to the extracellular matrix is important in metazoan cell migration and mechanosensation. Although adhesion assembly depends on intracellular and extracellular tension, the biophysical regulation of force transmission between the actin cytoskeleton and extracellular matrix during this process remains largely unknown. RESULTS To elucidate th...

متن کامل

Focal adhesions as mechanosensors: the two-spring model.

Adhesion-dependent cells actively sense the mechanical properties of their environment through mechanotransductory processes at focal adhesions, which are integrin-based contacts connecting the extracellular matrix to the cytoskeleton. Here we present first steps towards a quantitative understanding of focal adhesions as mechanosensors. It has been shown experimentally that high levels of force...

متن کامل

Direct observation of α-actinin tension and recruitment at focal adhesions during contact growth.

Adherent cells interact with extracellular matrix via cell-substrate contacts at focal adhesions. The dynamic assembly and disassembly of focal adhesions enables cell attachment, migration and growth. While the influence of mechanical forces on the formation and growth of focal adhesions has been widely observed, the force loading on specific proteins at focal adhesion complex is not clear. By ...

متن کامل

Focal Contacts as Mechanosensors: Externally Applied Local Mechanical Force Induces Growth of Focal Contacts by an mDia1-dependent and ROCK-independent Mechanism

The transition of cell–matrix adhesions from the initial punctate focal complexes into the mature elongated form, known as focal contacts, requires GTPase Rho activity. In particular, activation of myosin II–driven contractility by a Rho target known as Rho-associated kinase (ROCK) was shown to be essential for focal contact formation. To dissect the mechanism of Rho-dependent induction of foca...

متن کامل

Multidimensional traction force microscopy reveals out-of-plane rotational moments about focal adhesions.

Recent methods have revealed that cells on planar substrates exert both shear (in-plane) and normal (out-of-plane) tractions against the extracellular matrix (ECM). However, the location and origin of the normal tractions with respect to the adhesive and cytoskeletal elements of cells have not been elucidated. We developed a high-spatiotemporal-resolution, multidimensional (2.5D) traction force...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 100 12  شماره 

صفحات  -

تاریخ انتشار 2011